Functional relationships

- We frequently need to represent economic quantities as a mathematical function of one or more variables, e.g.:
- A firm's costs as a function of output
- Market demand for a good in terms of price and other factors
- A consumer's utility in terms of quantities of different goods purchased.

A function is a rule that takes one or more numbers as inputs (arguments) and gives another number as output.
e.g. $f(x)=x^{2}$

Here, " f " is the name given to the function, x represents the input, x^{2} tells us how to calculate the answer in terms of the input.
e.g. $f(2)=2^{2}=2 \times 2=4, f(5)=5^{2}=5 \times 5=25$ etc.

A function can be seen as a 'black box' for converting numbers into other numbers:

The variable or number in brackets is referred to as the argument of the function.

If we want to write another variable as a function of x, we may write $y=$ $f(x)$, or just (in this case) $y=x^{2}$.
E.g. we could express a demand function by
$\mathrm{Q}=20-5 \mathrm{P}$
Where Q is quantity demanded and P is price. Thus quantity is expressed as a function of price.

Functions of more than one variable

We may have functions of two or more variables. For example
$F(x, y)=x y+2 x$
This function requires two numbers input to produce an answer. For example,
$\mathrm{F}(4,5)=4 * 5+2 * 4=28$
Here x is 4 and y is 5 .
Here, the function has two arguments.
For example in economics, a firm's output may depend on their input of Labour (L) and Capital (K), for example a Cobb-Douglas type production function:
$\mathrm{Q}=100 \mathrm{~L}^{0.5} \mathrm{~K}^{0.5}$
Where Q is units of output, L is number of workers and K is, perhaps, number of machines.

For example, if $\mathrm{L}=9$ and $\mathrm{K}=16$, then
$\mathrm{Q}=100 *\left(9^{0.5}\right) *\left(16^{0.5}\right)=100 * 3 * 4=1,200$ units.

Graphs of functions

Functions of 1 variable can easily be represented on a graph. E.g. if we have
$F(x)=x^{2}$

This has a graph something like:

The simplest sorts of functions are linear. These are of the form $Y=a+b X$

Where \mathbf{a} and \mathbf{b} are constants, e.g. $Y=5-2 X$.. The graphs of these functions are straight lines. For example if we have the demand function
$\mathrm{Q}=20-5 \mathrm{P}$

First, because we always put price on the vertical axis, we need to get P on to the left hand side of the equation. Thus
$Q+5 P=20$
$5 \mathrm{P}=20-\mathrm{Q}$
$\mathrm{P}=(20 / 5)-(\mathrm{Q} / 5)$
$\mathrm{P}=4-\mathrm{Q} / 5$
This has a graph:

20
With functions of two variables, the graph will in fact be a three-dimensional surface - for example the function $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{2}+\mathrm{Y}^{2}$ will be a dome-shape, which it may be possible to sketch. Another way of graphically representing functions of two variables is by a contour map that draws curves showing combinations of values of X and Y that give the same value of $\mathrm{F}(\mathrm{X}, \mathrm{Y})$. For example, an indifference curve map is simply the contour map of a Utility function. To give another example, let $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{X}^{2}+\mathrm{Y}^{2}$. Then the contour map for $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ consists of a series of concentric circles around the origin, with further out circles representing higher values of $\mathrm{F}(\mathrm{X}, \mathrm{Y})$, as follows:

Of course, it is not really possible to draw graphs of functions of more than two variables.

